On the Enumeration of One-Factorizations of Complete Graphs Containing Prescribed Automorphism Groups

نویسندگان

  • D. R. Stinson
  • D. R. STINSON
چکیده

In this paper we use orderly algorithms to enumerate (perfect) one-factorizations of complete graphs, the automorphism groups of which contain certain prescribed subgroups. We showed that, for the complete graph Ki2, excluding those one-factorizations containing exactly one automorphism of six disjoint cycles of length two, there are precisely 56391 nonisomorphic one-factorizations of Ki2 with nontrivial automorphism groups. We also determined that there are precisely 21 perfect one-factorizations of Ku that have nontrivial automorphism groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K14

We establish by means of a computer search that a complete graph on 14 vertices has 98,758,655,816,833,727,741,338,583,040 distinct and 1,132,835,421,602,062,347 nonisomorphic one-factorizations. The enumeration is constructive for the 10,305,262,573 isomorphism classes that admit a nontrivial automorphism.

متن کامل

The automorphism group of the reduced complete-empty $X-$join of graphs

Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...

متن کامل

On classifying finite edge colored graphs with two transitive automorphism groups

This paper classifies all finite edge colored graphs with doubly transitive automorphism groups. This result generalizes the classification of doubly transitive balanced incomplete block designs with 1 and doubly transitive one-factorizations of complete graphs. It also provides a classification of all doubly transitive symmetric association schemes. The classification of finite simple groups i...

متن کامل

On transitive one-factorizations of arc-transitive graphs

An equivalent relation between transitive 1-factorizations of arctransitive graphs and factorizations of their automorphism groups is established. This relation provides a method for constructing and characterizing transitive 1-factorizations for certain classes of arc-transitive graphs. Then a characterization is given of 2-arc-transitive graphs which have transitive 1factorizations. In this c...

متن کامل

New infinite classes of 1-factorizations of complete graphs

Some classes of I-factorizations of complete graphs are known. They are GK2n , AK2n , W K 2n and their variations, and automorphism-free I-factorizations. In this paper, for any positive integer t, we construct new I-factorizations NtK 2n which are defined for all 2n with 2n ~ 6t. They also have some variations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010